Python 实现图像快速傅里叶变换和离散余弦变换
图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强、去噪、压缩编码等众多领域。本文手工实现了二维离散傅里叶变换和二维离散余弦变换算法,并在多个图像样本上进行测试,以探究二者的变换效果。
1. 傅里叶变换
实验原理
对一幅图像进行离散傅里叶变换(DFT),可以得到图像信号的傅里叶频谱。二维 DFT 的变换及逆变换公式如下:
DFT 尽管解决了频域离散化的问题,但运算量太大。从公式中可以看到,有两个嵌套的求和符号,显然直接计算的复杂度为 \(O(n^2)\) 。为了加快傅里叶变换的运算速度,后人提出快速傅里叶变换(FFT),即蝶形算法,将计算 DFT 的复杂度降低到了 \(O(n\log n)\)。
FFT 利用傅里叶变换的数学性质,采用分治的思想,将一个 \(N\) 点的 FFT,变成两个 \(N/2\) 点的 FFT。以一维 FFT 为例,可以表示如下:
其中,\(G(k)\) 是 \(x(k)\) 的偶数点的 \(N/2\) 点的 FFT,\(H(k)\) 是 \(x(k)\) 的奇数点的 \(N/2\) 点的 FFT。
这样,通过将原问题不断分解为两个一半规模的子问题,然后计算相应的蝶形运算单元,最终得以完成整个 FFT。
算法步骤
本次实验中,一维 FFT 采用递归实现,且仅支持长度为 2 的整数幂的情况。
算法步骤如下:
- 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
- 对图像的灰度值进行归一化。
- 对图像的每一行执行一维 FFT,并保存为中间结果。
- 对上一步结果中的每一列执行一维 FFT,返回变换结果。
- 将零频分量移到频谱中心,并求绝对值进行可视化。
- 对中心化后的结果进行对数变换,以改善视觉效果。
主要代码
一维 FFT
1 | def fft(x): |
二维 FFT
1 | def fft2(img): |
零频分量中心化
1 | def fftshift(img): |
运行结果
2. 余弦变换
实验原理
当一个函数为偶函数时,其傅立叶变换的虚部为零,因而不需要计算,只计算余弦项变换,这就是余弦变换。离散余弦变换(DCT)的变换核为实数的余弦函数,因而计算速度比变换核为指数的 DFT 要快得多。
一维离散余弦变换与离散傅里叶变换具有相似性,对离散傅里叶变换进行下式的修改:
式中
由上式可见,\(\sum\limits_{x=0}^{2M-1}f_e(x)e^{\frac{-j2ux\pi}{2M}}\) 是 \(2M\) 个点的傅里叶变换,因此在做离散余弦变换时,可将其拓展为 \(2M\) 个点,然后对其做离散傅里叶变换,取傅里叶变换的实部就是所要的离散余弦变换。
算法步骤
基于上述原理,二维 DCT 的实现重用了上文中的一维 FFT 函数,并根据公式做了一些修改。
算法步骤如下:
- 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
- 对图像的灰度值进行归一化。
- 对图像的每一行进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,并保存为中间结果。
- 对上一步结果中的每一列进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,返回变换结果。
- 对结果求绝对值,并进行对数变换,以改善视觉效果。
主要代码
二维 DCT
1 | def dct2(img): |
运行结果
完整源码请见 GitHub 仓库